The 2nd Symposium on Cosmology and Ali CMB Polarization Telescope

Foreground removal pipeline in AliCPT

Le Zhang (SJTU)

BNU - 2019.09.07

- Science and current status of the project
- Progress on foreground removal: temperature & polarization
- Summary and Outlook

Working Group on foreground removal:

PJ Zhang (SJTU)

J. Delabrouille (CNRS) L. Santos (USTC)

L. Zhang (SJTU)

J. Yao (SJTU)

H. Liu (NBI)

ZY Sun (SJTU)

B. Hu (BNU)

JX Wang (SJTU)

- Foreground removal: one of major challenges in B-mode detection
 - proposed a new algorithm for foreground removal ABS
 - developing pipelines (at least 2-3) for AliCPT ILC/ABS/SMICA

• Foreground science:

- to reconstruct magnetic/dusts/electron fields
- to understand the physical origins of foreground components

Data analysis pipeline

Data analysis Pipeline for AliCPT

Foreground Challenge

- Complex dust polarization
- subtract foregrounds (synch+dust) down to tens of nK if r~ 0.01

Foreground removal methods in Planck

Foreground removal – ABS

We find an Analytical Blind Separation method (ABS)

- Goal: to solve for CMB power spectrum without any assumptions on foregrounds; Intuitively, this task seems to be impossible!
- Measured cross band powers between frequency channels

海交通

$$\mathcal{D}_{ij}(\ell) = f_i^{\mathrm{B}} f_j^{\mathrm{B}} \mathcal{D}_{\mathrm{B}}(\ell) + \mathcal{D}_{ij}^{\mathrm{fore}}(\ell)$$

An analytical unique solution of $D_B(I)$ achieved by the Sylvester's determinant theorem as long as $M < N_f$

the μ -th eigenvector of \mathcal{D}_{ij} is $\mathbf{E}^{(\mu)}$

 $G_{\mu} \equiv \mathbf{f}^{\mathrm{B}} \cdot \mathbf{E}^{(\mu)}$

M: rank of D^{fore}, M non-zero eigenvalues N_f: number of frequency channels

$$\mathcal{D}_{\mathrm{B}} = \left(\sum_{\mu=1}^{M+1} G_{\mu}^2 \lambda_{\mu}^{-1}\right)^{-1}$$

PJ Zhang et al, MNRAS 484, 1616Z (2019)

Tests in Planck Temperature maps

Eigenmodes below 1/2 excluded, which are essentially noise-dominated modes

Yao et al, ApJS 848,44Z (2018)

2000

Tests in Q/U maps

Simulation of polarization maps:

 $U/Q(\hat{n},\nu) = A(\hat{n},\nu) \otimes (f + s_{\text{CMB}})(\hat{n},\nu) + n(\hat{n},\nu)$

A PICO-like experiment

Band center	Beam FWHM	noise level
(GHz)	(arcmin)	$(\mu K_{CMB}$ - arcmin)
030	28.3	12.4
043	22.2	7.9
075	10.7	4.2
090	9.5	2.8
108	7.9	2.3
129	7.4	2.1
155	6.2	1.8
223	3.6	4.5
268	3.2	3.1
321	2.6	4.2

Santos & Yao et al, submitted to A&A

Results with separating E-B leakage

海交通

Relative deviations of the recovered BB power spectrum ~ 20% on average at I<1000

• Big overestimate at the 1st I-bin, probably due to effects from the SZ E/B separation

Foreground removal - ML

If the frequency channels < foreground components? - above methods failed

Generative Adversarial Networks (GANs) are a way to make a generative model by having two neural networks compete with each other.

Generative Adversarial Network (GAN)

The **discriminator** tries to distinguish genuine data from forgeries created by the generator.

The **generator** turns random noise into immitations of the data, in an attempt to fool the discriminator. Goodfellow, 2014

C 10.11 00.1.4

Tests for ML method

+

components on the sky 10¹ total signal 100 Q +10-1 CMB U 10-2 $\ell(\ell+1)C_{\ell}/2\pi(\mu K^2)$ -0.1 $r_{\ell}/2\pi(\mu K^2)$ $(\sim f_{sky} = 15\%)$ noise r value 0.0 10-6 0.04 0.08 10-7 0.12 0.16 10-8 0.2 10-9 10¹ 10²

Only 95, 150, 353GHz

- In training set, simultaneously learn the partial-sky (Q&U + E&B)
- Here E&B are converted from full-sky Q&U, which could automatically avoid E&B leakage problem
- Finally, for given Q&U, ML returns E&B maps

Results from ML method

E-mode

Yao et al., in preparation

Summary and Outlook

- Constructing a pipeline with multiple methods (ABS/ILC/SMICA/Template fitting or their variants) for foreground removal
- Details of data selection, masking, preprocessing, convolution/deconvolution, error propagation, etc., are also the hard parts in the pipeline, which should be well investigated as the devil is in the details
- Foreground itself may provide plenty of information about our Galaxy (electrons and magnetic field ...)
- Building delensing pipelines and reconstructing the lensing map, which is important when r <0.01
- Cross-correlating AliCPT lensing with galaxies/lensing/CIB/shear/y-map..., to mitigate systematics and to improve understanding of DE, Planck systematics, galaxy formation, AI, tSZ, ...