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▪ Science and current status of the project 

▪ Progress on foreground removal: temperature & polarization  

▪ Summary and Outlook 
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Main tasks and science 

• Foreground	removal:	one	of	major	challenges	in	B-mode	detection	
- proposed	a	new	algorithm	for	foreground	removal	-	ABS	
- developing	pipelines	(at	least	2-3)	for	AliCPT	-	ILC/ABS/SMICA		

• Foreground	science:	
- to	reconstruct	magnetic/dusts/electron	fields	
- to	understand	the	physical	origins	of	foreground	components		
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Data analysis pipeline 

Correlate with other observables
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Delensing 

• Complex dust polarization 
• subtract foregrounds (synch+dust) down to tens of nK if r~ 0.01

Foreground Challenge
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Foreground removal methods in Planck

parametric/non-blind - model fitting  
• COMMANDER (Gibbs sampling)

non-parametric/blind - data driven  
• SMICA, NILC, SEVEM

Cross-check is important for
validation!

At least 2-3 foreground-removal methods to be used in AliCPT 
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instrumental noise.

2.1. The analytical solution for the case of no
instrument noise

Our method works on Dij(ℓ), the Nf × Nf matrix of
cross bandpower between the i-th and j-th frequency
bands. Here i, j = 1, 2 · · ·Nf and Nf is the number of
frequencies. In thermodynamic units,

Dij(ℓ) = fB
i f

B
j DB(ℓ) +Dfore

ij (ℓ) . (1)

Since we use the thermodynamic units, fB = 1. Dfore
ij is

the cross bandpower matrix of foreground. It has order
Nf , but its rank M depends on the number of indepen-
dent foreground components. Our task is to solve Eq. 1
for DB(ℓ) of a single multipole ℓ bin, without assump-
tions of Dfore

ij . This may appear as a mission impossible.
However, due to two facts that Nf ×Nf matrix Dij has
only M +1 eigenvectors and that fB(ν) is known, we are
able to prove the following two key results.

• The solution to DB is unique, as long as M <
Nf .

• The analytical solution exists, given by

DB =

(

M+1
∑

µ=1

G2
µλ

−1
µ

)−1

. (2)

Here, the µ-th eigenvector ofDij is E
(µ), which has eigen-

value λµ and normalization E(µ) · E(µ) = 1. The eigen-
modes are always ranked with decreasing order in |λµ|.
Since Dij is positive definite, λµ > 0. Gµ ≡ fB · E(µ).
We prove the uniqueness of the solution and derive Eq.
2 in the appendix. Eq. 2 also proves the uniqueness of
the solution.
Eq. 2 is not straightforward to understand. However,

for the limiting case of M ≤ 2, one can solve for all
eigenmodes analytically and verify Eq. 2 by brute-force.
This equation also confirms our instinct that any fore-
ground components orthogonal to the CMB signal in the
frequency space do not interfere the B-mode reconstruc-
tion.

2.2. Natural extension to the case with instrument noise

Instrument noise adds random noise δDinst
ij on the ob-

served bandpower,

Dobs
ij ≡ Dij + δDinst

ij . (3)

Surprisingly, Eq. 2 can still be implemented in the data
analysis, with straightforward modification to account
for instrument noise.

• Step 1. We compute all Nf eigenmodes of Dobs
ij .

• Step 2. We measure DB from Eq. 2, but only using
eigenmodes with λµ > σinst

D .

Here σinst
D is the r.m.s. of instrument noise in the band-

power. For brevity, we assume that all frequency bands

Table 1
We test our ABS method against various CMB frequency

configurations and instrumental noise. σinst
D

is the r.m.s. error in
the bandpower measurement caused by instrumental noise.

Labels frequency/GHz σinst
D

/µK2

S0 30, 70, 100, 150, 217 & 353
S1 95, 150, 220 & 270
S2 35, 95, 150, 220 & 270
S3 35, 95, 150, 220, 270 & 353 (10−5, 10−2)
S4 30, 36, 43, 51, 62, 75, 90,105, 135

160, 185,200, 220, 265, 300 & 320

have identical σinst
D .1 Instrument noise not only af-

fects physical eigenmodes, but also induces unphysical
eigenmodes with eigenvalues of typical amplitude σinst

D .
Therefore we exclude eigenmodes with λµ ≤ σinst

D . This
selection criteria may not be optimal, but it already
works well as we will show later.
The above method of measuring DB, even including

the determination of M , is completely fixed by the data,
and relies on no priors of foregrounds.

3. TESTING THE ABS METHOD

Next we test the ABS method against simulated Dobs
ij

with a variety of foregrounds, instrument noise and sur-
vey frequency configurations.

3.1. Simulated observations

To generate simulated Dobs
ij , we approximate

δDinst
ij as Gaussian distributed with dispersion

σinst
D . σinst

D is a key factor in CMB B-mode
search. BICEP2/Keck has reached σinst

D ∼ 10−3µK2

(BICEP2/Keck and Planck Collaborations et al. 2015).
Future experiments can go well below 10−4µK2. For
example, PRISM (André et al. 2014) has typical noise
∼ 70µK/detector/arcmin2, ∼ 200 detectors per band,
σinst
D ≃ 3.7 × 10−5µK2(ℓ/∆ℓ)1/2(0.5/fsky)1/2(ℓ/80).

Here ∆ℓ is the width of multipole bin and fsky is the
fractional sky coverage. Other experiments such as
COrE, EPIC and LiteBIRD have similar sensitivity. We
consider a wide range of σinst

D ∈ (10−5, 10−2)µK2 to
include all these possibilities.
Frequency configuration is crucial for foreground re-

moval. We consider five configurations (S0-S4), shown
in Table 1.

• S0 is the fiducial one, with 6 bands centered at 30,
70, 100, 150, 217 & 353 GHz. This configuration is
similar to Planck. It has a wide frequency coverage,
good for both radio and foreground removal.

• S1 has 4 bands at 95, 150, 220 & 270 GHz (Keck
array-like, Grayson et al. (2016)). A major differ-
ence of S1 to S0 is the lack of low frequency bands
and hence limited capability of radio foreground
identification and removal.

1 For realistic surveys, instrumental noise varies across frequency
bands and the cut in step 2 should be replaced by some sort of
average over σinst

D
of each band. For such situation, quantitative

study has to target at each specific surveys. Since we do not expect
fundamental impacts to our method, we leave such investigation in
future works.

▪ Goal: to solve for CMB power spectrum without any assumptions 
on foregrounds; Intuitively, this task seems to be impossible! 

An analytical unique solution of DB(l) 
achieved by the Sylvester’s determinant 
theorem as long as M< Nf

M: rank of Dfore, M non-zero eigenvalues  
Nf: number of frequency channels
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We find an Analytical Blind Separation method (ABS)

Measured cross band powers 
between frequency channels

Foreground removal — ABS

PJ Zhang et al, MNRAS 484,1616Z (2019)
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Eigenvalues of data matrix

Eigenmodes below 1/2 excluded, which 
are essentially noise-dominated modes   

errors are estimated by 50 
independent realizations of the noise

On average over all l-bins, the absolute error is 
about −0.56 μK2 with 1-σ error of 2.66 μK2.

Yao et al, ApJS 848,44Z (2018) 

Tests in Planck Temperature maps
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A PICO-like experiment

U/Q( ̂n, ν) = A( ̂n, ν) ⊗ (f + sCMB)( ̂n, ν) + n( ̂n, ν)

Simulation of polarization maps:

30 GHz

321 GHz

Q U

Santos &Yao et al, submitted to A&A 

Tests in Q/U maps
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Apply ABS+ E/B separation (Smith & Zaldarriaga)  

• Relative deviations of the recovered BB power spectrum ~ 20% on average at l<1000

• Big overestimate at the 1st l-bin, probably due to effects from the SZ E/B separation 

•  

Results with separating E-B leakage
• mask

• Q

• U

• true r= 0



Goodfellow, 2014

If the frequency channels < foreground components? - above methods failed

Generative Adversarial Network (GAN)
Goodfellow, 2014

Foreground removal - ML



components on the sky Only 95, 150, 353GHz

total signal

CMB

noise r value

    E 
    + 
    B

    Q 
    + 
    U

‣ Q/U maps measured on a partial sky 
(~fsky = 15%) 

‣ In training set, simultaneously learn 
the partial-sky (Q&U + E&B) 

‣ Here E&B are converted from full-sky 
Q&U, which could automatically 
avoid E&B leakage problem

‣ Finally, for given Q&U, ML returns 
E&B maps  

Tests for ML method



E-mode B-mode

Preliminary

Yao et al., in preparation

Results from ML method



Summary and Outlook

• Constructing a pipeline with multiple methods (ABS/ILC/SMICA/Template fitting 
or their variants) for foreground removal 

• Details of data selection, masking, preprocessing, convolution/deconvolution, 
error propagation, etc., are also the hard parts in the pipeline, which should be 
well investigated as the devil is in the details 

• Foreground itself may provide plenty of information about our Galaxy (electrons 
and magnetic field …)

• Building delensing pipelines and reconstructing the lensing map, which is 
important when r <0.01 

• Cross-correlating AliCPT lensing with galaxies/lensing/CIB/shear/y-map…, to 
mitigate systematics and to improve understanding of DE, Planck systematics, 
galaxy formation, AI, tSZ, …  


