

based on "Planck 2018 results VII. Isotropy and statistics of the CMB"

Isotropy of the Universe

• Isotropy and homogeneity are fundamental assumptions in the standard Friedman-Robertson-Walker (FRW) model

$$ds^{2} = c^{2}dt^{2} - a^{2}(t)\left(\frac{dr^{2}}{1 - kr^{2}} + r^{2}\left(d\vartheta^{2} + \sin^{2}\vartheta d\varphi^{2}\right)\right)$$

- Statistical isotropy and homogeneity of perturbations around the FRW metric
- Isotropy confirmed by observations (CMB, galaxy surveys)

Isotropy of the Universe

• Isotropy and homogeneity are fundamental assumptions in the standard Friedman-Robertson-Walker (FRW) model

$$ds^{2} = c^{2}dt^{2} - a^{2}(t)\left(\frac{dr^{2}}{1 - kr^{2}} + r^{2}\left(d\vartheta^{2} + \sin^{2}\vartheta d\varphi^{2}\right)\right)$$

- Statistical isotropy and homogeneity of perturbations around the FRW metric
- Isotropy confirmed by observations (CMB, galaxy surveys)
- Homogeneity more difficult to test (obervations on past light cone, not spatial hypersurface)
- Ehlers, Geren, Sachs theorem (1968) (Clarkson & Maartens 2010, Stoeger, Maartens, Ellis 1995):

(statistical) isotropy + Copernican principle \implies (statistical) homogeneity

Isotropy of the Universe

• Isotropy and homogeneity are fundamental assumptions in the standard Friedman-Robertson-Walker (FRW) model

$$ds^{2} = c^{2}dt^{2} - a^{2}(t)\left(\frac{dr^{2}}{1 - kr^{2}} + r^{2}\left(d\vartheta^{2} + \sin^{2}\vartheta d\varphi^{2}\right)\right)$$

- Statistical isotropy and homogeneity of perturbations around the FRW metric
- Isotropy confirmed by observations (CMB, galaxy surveys)
- Homogeneity more difficult to test (obervations on past light cone, not spatial hypersurface)
- Ehlers, Geren, Sachs theorem (1968) (Clarkson & Maartens 2010, Stoeger, Maartens, Ellis 1995):

(statistical) isotropy + Copernican principle \implies (statistical) homogeneity

The scientific results that we present today are the product of the Planck Collaboration, including individuals from more than 50 scientific institutes in Europe, the USA and Canada

Planck satellite

- Two instruments on board:
 - Low Frequency Instrument (LFI)
 - High Frequency Instrument (HFI)
- Wide frequency coverage with nine channels from 30 to 857 GHz
- Full sky coverage
- Angular resolution from 33' down to 5'
- High sensitivity

CMB temperature maps

Ali CPT Symposium, Sept 2019

NILC

SMICA

Planck CMB maps

CMB anomalies tested by the Planck team for 2018 data release:

- Lack of correlation (lack of power) at large angular scales
- Point-parity asymmetry (preference for odd-parity modes in power spectrum)
- Hemispherical asymmetry for power spectrum and higher-order statistics
- Dipolar power asymmetry
- The Cold Spot and other large-scale peaks

• ...

Possible explanations:

- Systematic effects (calibration, processing of data, ...) ? No
- Galactic foreground ? Rather not
- Local astrophysical origin ? Rather not

Possible explanations:

- Systematic effects (calibration, processing of data, ...) ? No
- Galactic foreground ? Rather not
- Local astrophysical origin ? Rather not
- Result of a posteriori inference (a.k.a. the multiplicity problem, look elsewhere effect) ? Maybe

Large angular scale CMB anomalies

Possible explanations:

- Systematic effects (calibration, processing of data, ...) ? No
- Galactic foreground ? Rather not
- Local astrophysical origin ? Rather not
- Result of a posteriori inference (a.k.a. the multiplicity problem, look elsewhere effect) ? Maybe
- Cosmological origin ? Maybe
 - Bianchi ${\rm VII}_{\rm h}$ models (no evidence if the Bianchi model parameters coupled to the cosmological ones)
 - Multi-connected topology

• Lack of correlation for separation angles > 60° (~99.5 % CL)

$$S_{1/2} = \int_{-1}^{\cos(60^{\circ})} C^2(\theta) d\cos\theta$$

Planck 2015 results XVI

Testing lack of correlation:

- for other range of angular separation
- using Planck CMB polarisation maps

• CMB anisotropy map may be divided into parity-symmetric and parityantisymmetric functions

$$T^{\pm}(\boldsymbol{\hat{n}}) = rac{1}{2}[T(\boldsymbol{\hat{n}}) \pm T(-\boldsymbol{\hat{n}})]\,,$$

• Point-parity asymmetry (~98 % CL taking into account LEE)

• CMB anisotropy map may be divided into parity-symmetric and parityantisymmetric functions

$$T^{\pm}(\boldsymbol{\hat{n}}) = rac{1}{2}[T(\boldsymbol{\hat{n}}) \pm T(-\boldsymbol{\hat{n}})]\,,$$

• Point-parity asymmetry (~98 % CL taking into account LEE)

• Testing point-parity with polarisation data

$$D^X(\ell_{\max}) = C^X_+(\ell_{\max}) - C^X_-(\ell_{\max})$$

- No detection of anomalies for the Planck polarisation data
- Low signal-to-noise ratio is a limiting factor for the analysis

Planck 2018 results VII

Hemispherical asymmetry – temperature maps

- Hemispherical asymmetry

 (significant differences between
 power spectra and higher order
 statistics in opposite hemispheres)
 ~ 98.5 % CL
- Amplitude of ~6 %

planck

 Direction of maximum asymmetry (l,b)~(225⁰,-15⁰) (near the ecliptic pole)

Hemispherical asymmetry – temperature maps

- Hemispherical asymmetry (significant differences between power spectra and higher order statistics in opposite hemispheres) ~ 98.5 % CL
- Amplitude of ~6 %

104

∆C(θ) [μK³]

Direction of maximum asymmetry ٠ $(l,b) \sim (225^{\circ}, -15^{\circ})$ (near the ecliptic pole)

Planck 2015 results XVI

Hemispherical asymmetry – CMB polarisation

Ali CPT Symposium, Sept 2019

• Dipolar modulation of CMB temperature map (amplitude of ~7% in the direction (l,b) = (221⁰, -22⁰), ~98% CL)

 $T(\hat{n}) = T_{iso}(\hat{n}) \left(1 + A \,\hat{p} \,\cdot\, \hat{n} \right)$

Planck 2018 results VII

- Dipolar modulation of CMB temperature map (amplitude of ~7% in the direction $(l,b) = (221^{\circ}, -22^{\circ}), \sim 98\%$ CL)

 $T(\hat{n}) = T_{iso}(\hat{n}) \left(1 + A \, \hat{p} \, \cdot \, \hat{n} \right)$

- No detection of asymmetry for the Planck polarisation data
- Sensitivity of the Planck polarisation data too low to confirm the temperature • dipolar asymmetry 102 101

<u>Ali CPT Symposium, Sept 2019</u>

• Peaks of size of order of 10^0 located in the southern Galactic hemisphere

- Studies of the CMB anisotropy give opportunity to test the assumption of statistical isotropy of the Universe
- Observed large angular scales CMB anomalies do not provide conclusive proofs that anything nonstandard is going on, but may indicate places to look for interesting nonstandard phenomena on large scales
- Anomalies not observed for the Planck polarisation data
- Low signal-to-noise ratio of the Planck polarisation data is a limiting factor for the studies
- In future possible testing of the large-scale anomalies and statistical isotropy with polarisation data from satellite missions or CMB maps combined from few ground based CMB experiments (AliCPT + Advanced ACT + POLARBEAR, etc.)