

Ì

Cosmic Large-Scale Structure Deep Learning

Xiao-Dong Li 李霄栋(SYSU)

Sep, 2019 @ BNU

Motivation

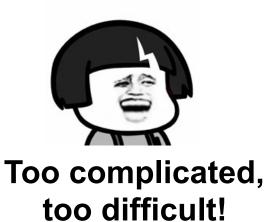
Complicated system!

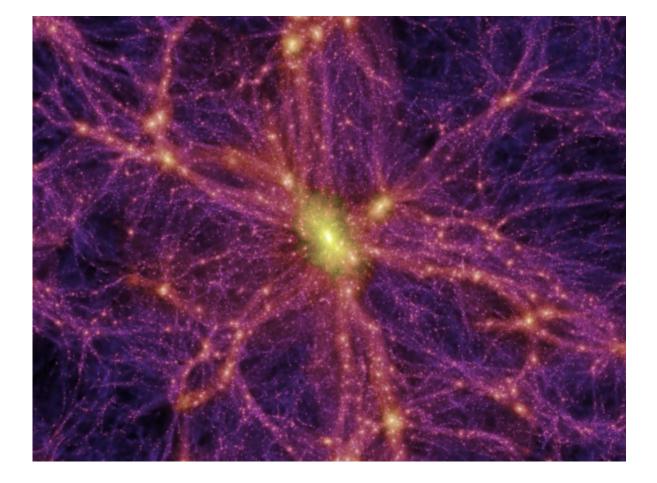
Analytically difficult!

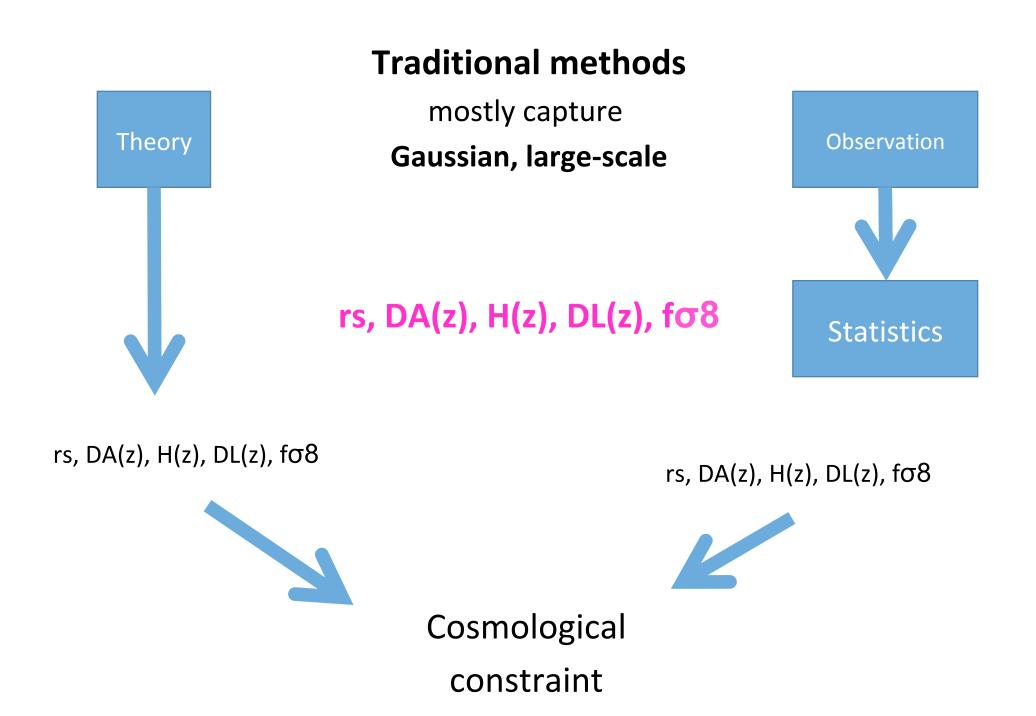
Theoretically difficut!

Statistically difficult!

...







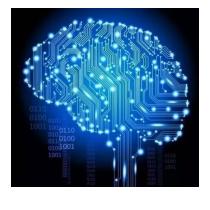
Machine Learning

(Hopefully) can cover non-Gaussian, non -linear, small-scale

Theory

Mocks

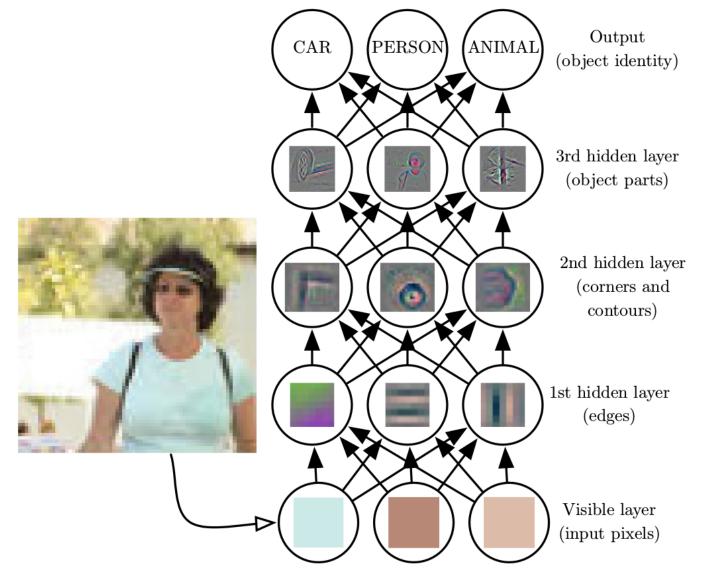
Machine Learning



Observation

Cosmological constraint

Deep Learning

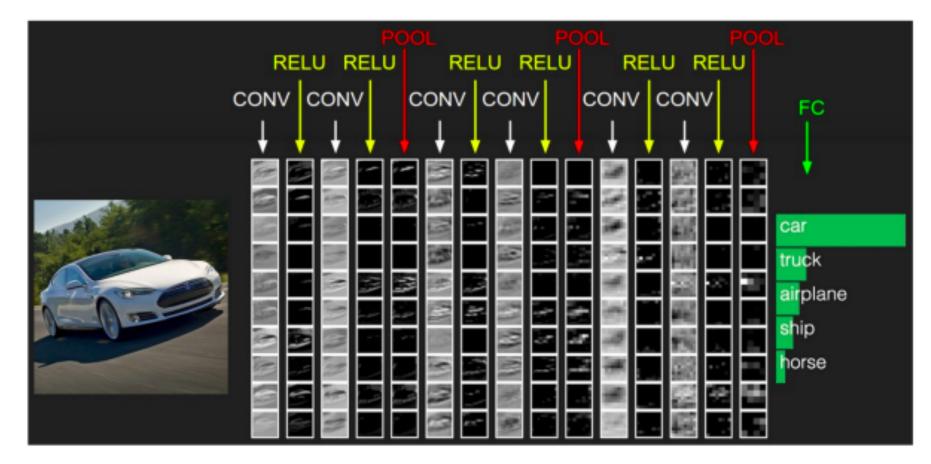


•Inputs are just pixels

•Based on that, more sophisticated features constructed. See hidden layers.

•E.g., first layer identifies edges based on brightness contrast; second layer identifies angles and boundaries based on edges; third layer groups together angles and boundaries and can identify some objects

Convolutional Neural Network (CNN)

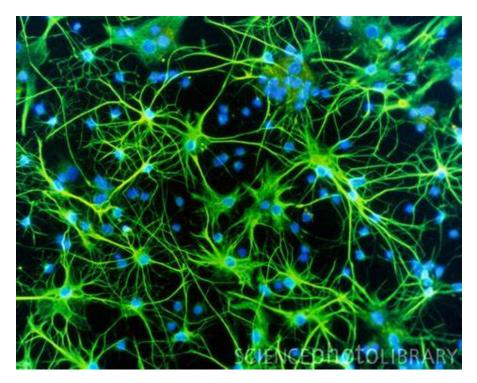


Automatical extraction of various features

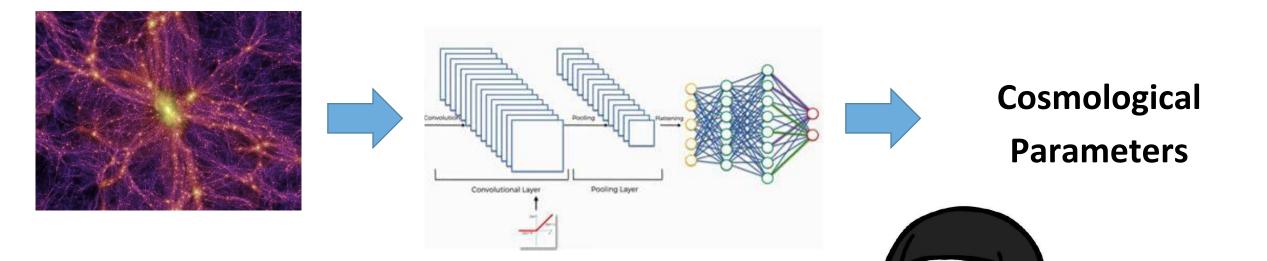
Connectionism (联结主义)

- When connecting together a large number of simple units, the system becoms intellegent.
- Example: Human's Brain

Your brain is just a collection of naieveness



Parameter Regression



Build-up a neural system recognizing the Universe!

Pan et al., arXiv:1908.10590

COSMOLOGICAL PARAMETER ESTIMATION FROM LARGE-SCALE STRUCTURE DEEP LEARNING

Shuyang Pan, Miaoxin Liu,¹ Jaime Forero-Romero,² Cristiano G. Sabiu,³ Zhigang Li,⁴ Haitao Miao,¹ and Xiao-Dong Li ^{*1}

We propose a light-weight deep convolutional neural network to estimate the cosmological parameters from simulated 3-dimensional dark matter distributions with high accuracy. The training set is based on 465 realizations of a cubic box size of 256 h^{-1} Mpc on a side, sampled with 128³ particles interpolated over a cubic grid of 128³ voxels. These volumes have cosmological parameters varying within the flat Λ CDM parameter space of 0.16 $\leq \Omega_m \leq 0.46$ and $2.0 \leq 10^9 A_s \leq 2.3$. The neural network takes as an input cubes with 32³ voxels and has three convolution layers, three dense layers, together with some batch normalization and pooling layers. We test the error-tolerance abilities of the neural network, including the robustness against smoothing, masking, random noise, global variation, rotation, reflection and simulation resolution. In the final predictions from the network we find a 2.5% bias on the primordial amplitude σ_8 that can not easily be resolved by continued training. We correct this bias to obtain unprecedented accuracy in the cosmological parameter estimation with statistical uncertainties of $\delta\Omega_m=0.0015$ and $\delta\sigma_8=0.0029$. The uncertainty on Ω_m is 6 (and 4) times smaller than the Planck (and Planck+external) constraints presented in Ade et al. (2016).

Related work: Ravanbakhsh et al. 2017, Mathuriya et al. 2018

First two authors are first-year under-graduates

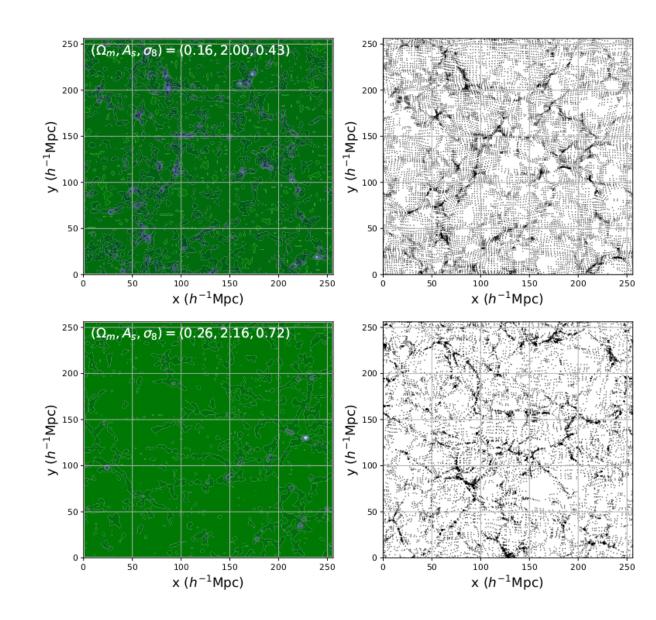
Training Set

COLA simulation, ~500 cosmologies

•0.16 $\leq \Omega_{\rm m} \leq$ 0.46, step size 0.01

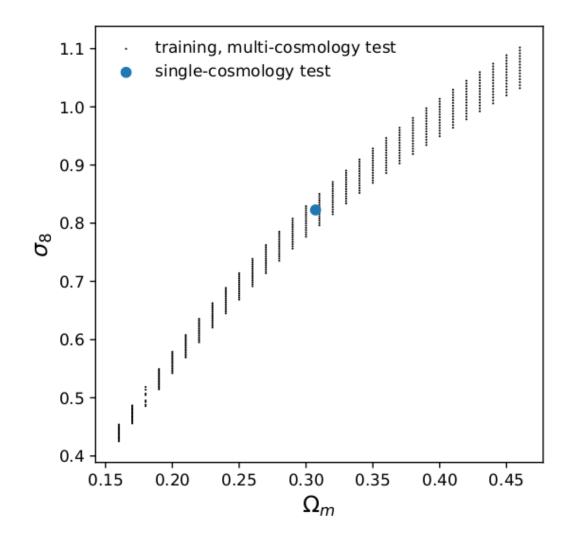
•2.0 \leq 10 ⁹ A_s \leq 2.3, step size 0.02

•128 ³ particles, (256 h ⁻¹ Mpc) ³ box,

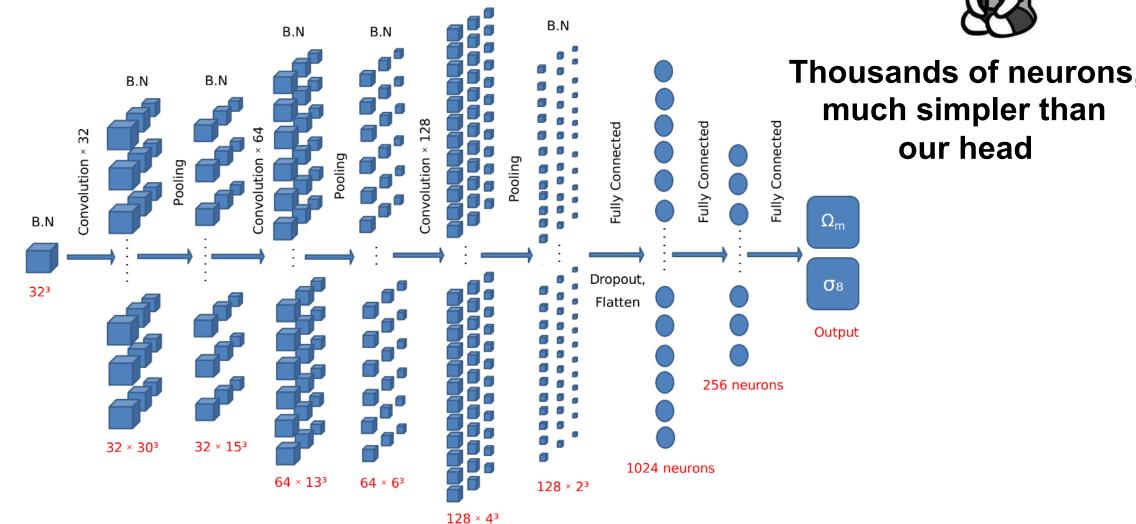


Distribution in Ω_m - σ_8 space

From Ω_m -A_s to Ω_m - σ_8 a degeneracy happens

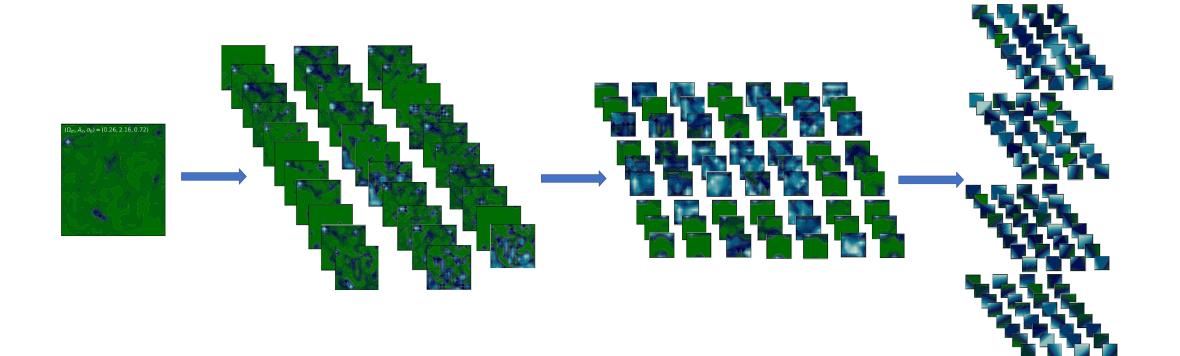


Our Architecture



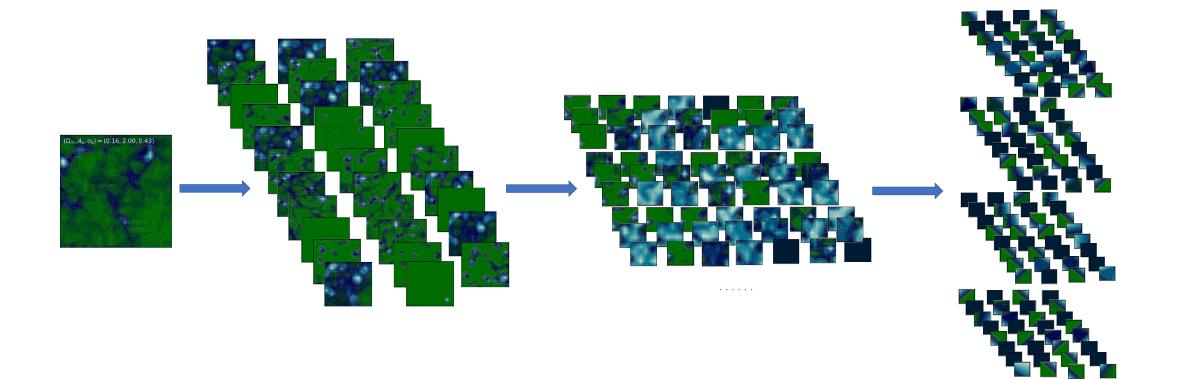
B.N

LSS feature extraction



$$(\Omega_{\rm m} - \sigma_8) = 0.26, 0.72$$

LSS feature extraction

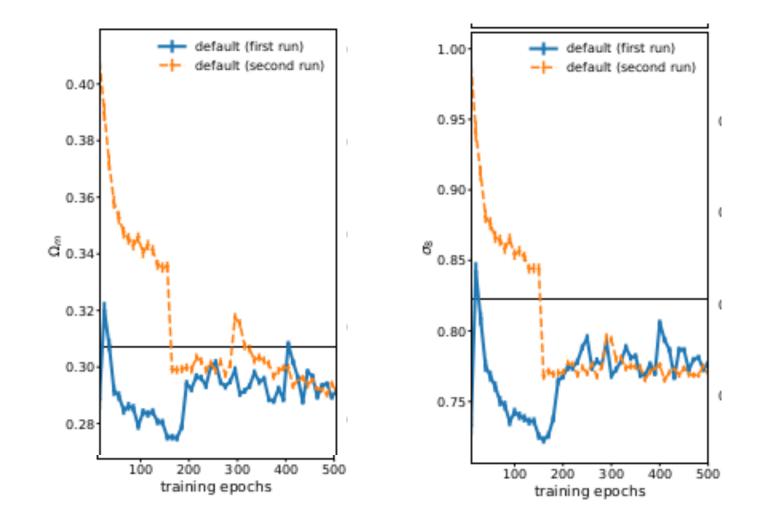


$$(\Omega_{\rm m} - \sigma_8) = 0.16, 0.43$$

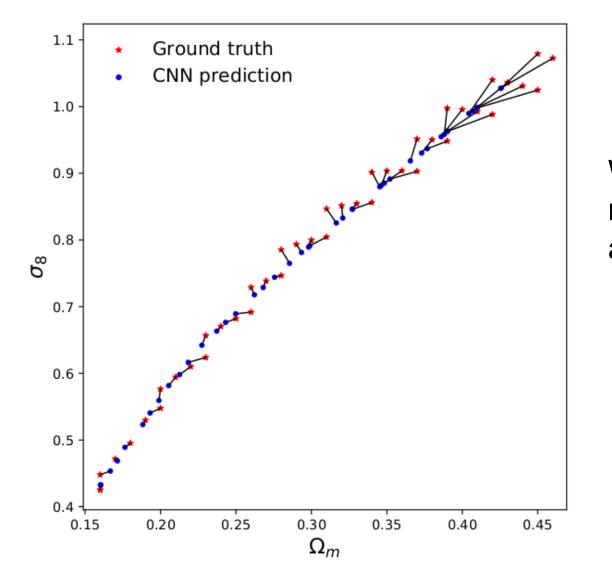
Training (converge after 200 epochs)



Understanding the Universe in ~1 week

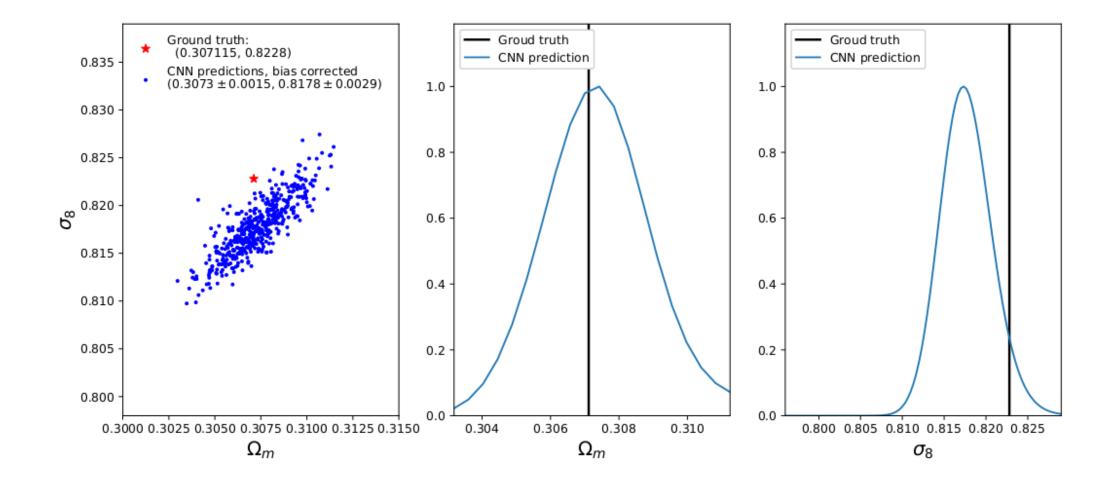


Controlling Bais



We add a regression after the neural networks to learn the noise and correct it

Single-cosmology Test



Unprecedented Precision

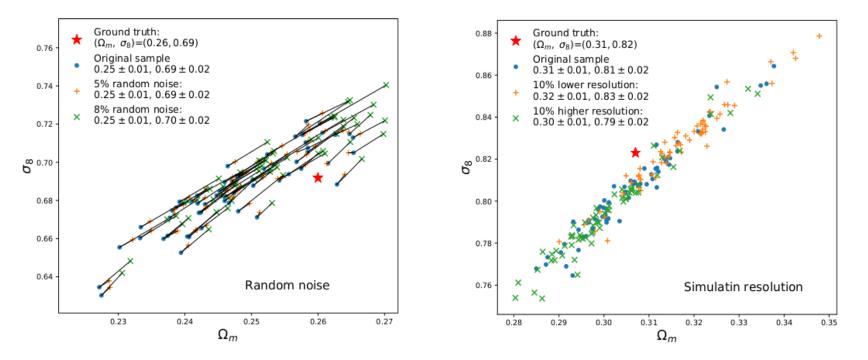
Just using a (256 Mpc/h)³ sample, the CNN achievers

 $δΩ_{m} = 0.0015, δσ_{8} = 0.0029$

Uncertainty of Ω_m 6 (and 4) times smaller than the Planck (and Planck+external) constraints

Machine outperforms any man-designed statistics

Robustness Tests



Robustness tests on samples having 32³ voxels.

A 3% smoothing or 10% global variation leads to considerable change in the predicted

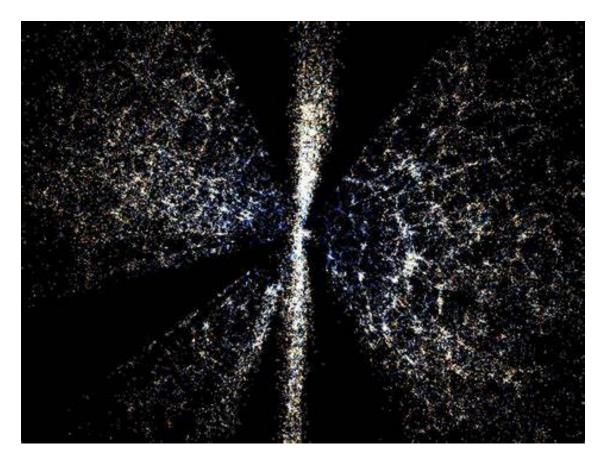
results (~ 2σ shift in central values, ~ 100% enlarged errors).

1% smoothing, 5% global variation, and 10% change in the simulation's resolution mildly affect the prediction (~ 1σ shift in central values, errors unchanged).

Other cases, including the 1 or 4 3 voxels removal, 5% or 8% random noise addition, rotation and relfection, does not affect the results at all.

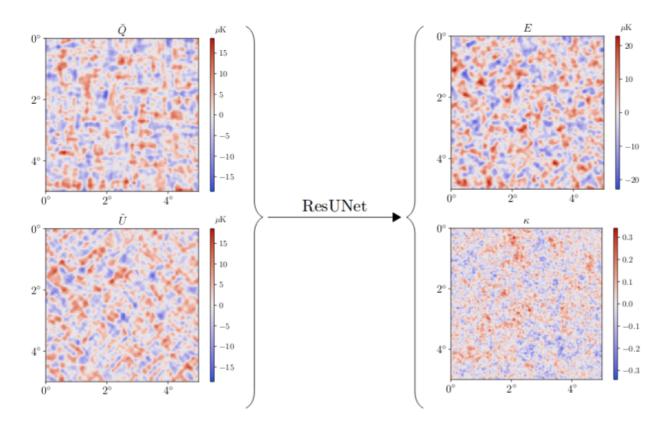
Next Step

ML on multi-cosmology SDSS mock surveys



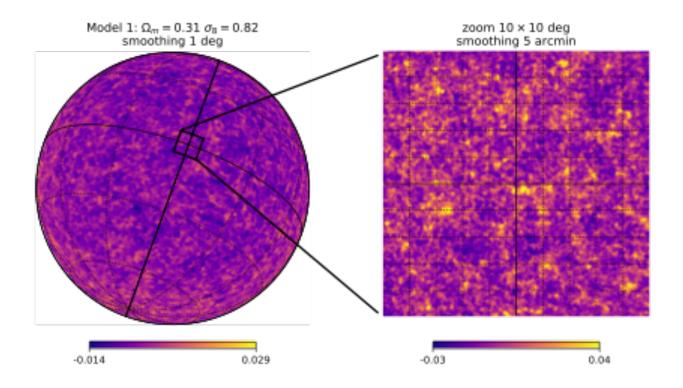
CMB related works

Lensing Reconstruction (Caldeira et al., 1810.01483)



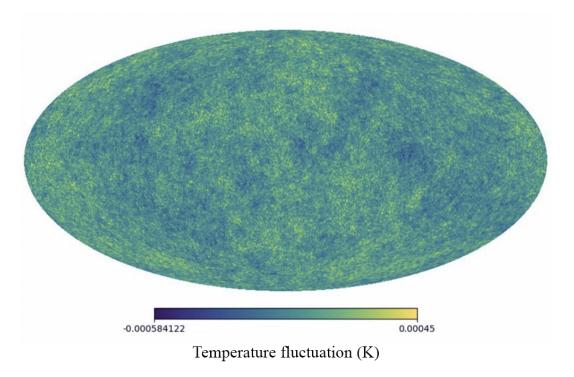
CMB related works

CNN on sphere (Perraudin et al. 1810.12186)



CMB related works

Fast simulation (Mishra et al. 1908.04682)



Sun Yat-Sen University Welcome you!

- (> 30) Positions
 - Professor/Associate Professor
 - Researcher
 - Postdoc
- Research Direction
 - TianQin (GW probe)
 - Astronomy (Galaxy and cosmology, Milky way, stellars, planets, high -energy physics, observational astronomy,...)
 - Theortical physics
 - Quantum physics