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Motivation

Complicated system!
Analytically difficult!
Theoretically difficut!

Statistically difficult!

)

Too complicated,
too difficult!



Traditional methods

mostly capture

. Observation
Gaussian, large-scale
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Machine Learning

(Hopefully) can cover non-Gaussian, non
-linear, small-scale Observation

Machine Learning

Cosmological constraint



Deep Learning

Output
(object identity)

3rd hidden layer
(object parts)

2nd hidden layer
(corners and
contours)

1st hidden layer
(edges)

Visible layer
(input pixels)

*Inputs are just pixels

*Based on that, more sophisticated features
constructed. See hidden layers.

*E.g., first layer identifies edges based on
brightness contrast; second layer identifies
angles and boundaries based on edges; third
layer groups together angles and boundaries
and can identify some objects



Convolutional Neural Network (CNN)
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Automatical extraction of various features



Connectionism (B£45 3 X)

* When connecting together a large number of
simple units, the system becoms intellegent.

 Example: Human's Brain

Your brain is just a
collection of naieveness



Parameter Regression
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Build-up a neural system
recognizing the Universe!




Pan et al., arXiv:1908.10590

COSMOLOGICAL PARAMETER ESTIMATION FROM LARGE-SCALE STRUCTURE DEEP LEARNING

SHUYANG PAN, M1AoOXIN Liu,! JAIME FORERO-ROMERO,? CRISTIANO G. SABIU,? ZHIGANG L1, HArTAO MI1AO,' AND
X1ao-Dong L1 *!

We propose a light-weight deep convolutional neural network to estimate the cosmological parameters from simulated
3-dimensional dark matter distributions with high accuracy. The training set is based on 465 realizations of a cubic
box size of 256 h~! Mpc on a side, sampled with 1282 particles interpolated over a cubic grid of 128° voxels. These
volumes have cosmological parameters varying within the flat ACDM parameter space of 0.16 < ,, < 0.46 and
2.0 < 10°4; < 2.3. The neural network takes as an input cubes with 322 voxels and has three convolution layers,
three dense layers, together with some batch normalization and pooling layers. We test the error-tolerance abilities

of the neural network, including the robustness against smoothing, masking, random noise, global variation, rotation,
reflection and simulation resolution. In the final predictions from the network we find a 2.5% bias on the primordial
amplitude og that can not easily be resolved by continued training. We correct this bias to obtain unprecedented
accuracy in the cosmological parameter estimation with statistical uncertainties of §¢2,,=0.0015 and dog=0.0029. The
uncertainty on €2,, is 6 (and 4) times smaller than the Planck (and Planck+external) constraints presented in Ade
et al. (2016).

Related work: Ravanbakhsh et al. 2017, Mathuriya et al. 2018

First two authors are
first-year under-graduates



Training Set

(Qm, As, 0s) = (0.16, 2,00, 0.43)

COLA simulation, ~500 cosmologies

y (h~*Mpc)

*0.16 < Q< 0.46, step size 0.01

*2.0<10°A < 2.3, step size 0.02

128 3 particles, (256 h 1 Mpc) 3 box,

y (h~*Mpc)

0 50 100 150 200 250
x (h~*Mpc)




Distribution in Q -0, space
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Our Architecture

Thousands of neurons.
much simpler than
our head
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LSS feature extraction
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LSS feature extraction

(Q.-0,) = 0.16, 0.43



Training (converge after 200 epochs)
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Understanding the
Universe in ~1 week
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Controlling Bais

L1171+ Ground truth
« CNN prediction
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We add a regression after the
neural networks to learn the noise
and correct it



Single-cosmology Test
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Unprecedented Precision

Just using a (256 Mpc/h)3 sample, the CNN achievers
6Q  =0.0015, &o,=0.0029

Uncertainty of Q_ 6 (and 4) times smaller than the Planck (and

Planck+external) constraints
A=

Machine outperforms
any man-designed statistics




Robustnhess Tests
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Robustness tests on samples having 323 voxels.

A 3% smoothing or 10% global variation leads to considerable change in the predicted

results (~ 20 shift in central values, ~ 100% enlarged errors).

1% smoothing, 5% global variation, and 10% change in the simulation’s resolution mildly affect the prediction (~ 1o
shift in central values, errors unchanged).

Other cases, including the 1 or 4 3 voxels removal, 5% or 8% random noise addition, rotation and relfection, does
not affect the results at all.



Next Step

ML on multi-cosmology SDSS mock surveys




CMB related works

Lensing Reconstruction (Caldeira et al., 1810.01483)
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CMB related works

CNN on sphere (Perraudin et al. 1810.12186)

Model 1: Q,, = 0.31 0y = 0.82 zoom 10 x 10 deg
smoothing 1 deg smoothing 5 arcmin




CMB related works

Fast simulation (Mishra et al. 1908.04682)

-0.000584122 0.00045

Temperature fluctuation (K)
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* TianQin (GW probe)
» Astronomy (Galaxy and cosmology,
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* Theortical physics
* Quantum physics



