Primordial Fluctuations and Rare Objects in the Universe

Zhiqi Huang
School of Physics and Astronomy
Sun Yat-sen University

Sep 08, 2019 Ali-CPT 2019
refs: Huang, PRD, 2019; Bond, Frolov, Huang, Kofman, PRL, 2009
Outline

Introduction

High-z SMBH Timing problem

SMBH Environment Problem

Primordial Black Holes

Modulated Preheating

Summary
A remarkable concordance cosmology (ΛCDM with slow-roll single-field inflation)

<table>
<thead>
<tr>
<th>parameter</th>
<th>expected</th>
<th>measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>spatial curvature Ω_k</td>
<td>$\lesssim 10^{-4}$</td>
<td>0.0007 ± 0.0019</td>
</tr>
<tr>
<td>scalar tilt n_s</td>
<td>$0.9 \lesssim n_s < 1$</td>
<td>0.967 ± 0.004</td>
</tr>
<tr>
<td>scalar running n_{run}</td>
<td>$\lesssim 10^{-3}$</td>
<td>$-0.007^{+0.013}_{-0.014}$</td>
</tr>
<tr>
<td>tensor r</td>
<td>$\lesssim 1$</td>
<td>< 0.07</td>
</tr>
<tr>
<td>Non-Gaussianity $f_{\text{NL}}^{\text{local}}$</td>
<td>$\lesssim 1$</td>
<td>2.5 ± 5.7</td>
</tr>
<tr>
<td>iso-curvature component α</td>
<td>0</td>
<td>0.00013 ± 0.00037</td>
</tr>
<tr>
<td>neutrino species N_{eff}</td>
<td>3.046</td>
<td>$2.96^{+0.34}_{-0.33}$</td>
</tr>
<tr>
<td>neutrino mass $\sum m_\nu$</td>
<td>0.06eV or 0.1eV</td>
<td>< 0.12eV</td>
</tr>
<tr>
<td>Helium abundance Y_p</td>
<td>$\sim 0.25 \pm 0.01$</td>
<td>$0.241^{+0.023}_{0.024}$</td>
</tr>
</tbody>
</table>

(numbers cited from Planck 2018 series of papers)
Puzzles to be resolved

- The H_0 tension (HST + H0LiCOW SL, $\sim 5\sigma$)
- Lensing Anomaly ($\sim 2\sigma$, Planck 2018)
- σ_8 tension ($\sim 2.5\sigma$, Böhringer et al. 2014, 2017)
- CMB missing large-angular correlation; CMB cold spot; Lithium abundance; ISW-LSS over-correlation; origin of SMBH at $z > 6$; ...
Super-CMB fluctuations can resolve the Hubble tension

Saroj Adhikari* and Dragan Huterer†
Department of Physics, University of Michigan, 450 Church St, Ann Arbor, MI 48109-1040;
Leinweber Center for Theoretical Physics, University of Michigan, 450 Church St, Ann Arbor, MI 48109-1040

We study the covariance in the angular power spectrum estimates of CMB fluctuations when the primordial fluctuations are non-Gaussian. The non-Gaussian covariance comes from a nonzero connected four-point correlation function — or the trispectrum in Fourier space — and can be large when long-wavelength (super-CMB) modes are strongly coupled to short-wavelength modes. The effect of such non-Gaussian covariance can be modeled through additional freedom in the theoretical CMB angular power spectrum and can lead to different inferred values of the standard cosmological parameters relative to those in ΛCDM. Taking the collapsed limit of the primordial trispectrum in the quasi-single field inflation model as an example, we study how the six standard ΛCDM parameters shift when two additional parameters describing the trispectrum are allowed. We find that the combination of Planck temperature data along with type Ia supernovae from Panstarrs and the distance-ladder measurement of the Hubble constant shows strong evidence for a primordial trispectrum-induced non-Gaussian covariance, with a likelihood improvement of $\Delta \chi^2 \approx -15$ relative to ΛCDM. The improvement is driven by Planck data’s preference for a higher lensing amplitude, which leads to an upward shift of the Planck-inferred Hubble constant.

resolves H_0 tension and lensing anomaly; but worsen σ_8 tension; polarization and tri-spectrum may be problematic
Today’s topic

- The H_0 tension (HST + H0LiCOW SL, $\sim 5\sigma$)
- Lensing Anomaly ($\sim 2\sigma$, Planck 2018)
- σ_8 tension ($\sim 2.5\sigma$, Böhringer et al. 2014, 2017)
- CMB missing large-angular correlation; CMB cold spot; Lithium abundance; ISW-LSS over-correlation; origin of SMBH at $z > 6$; ...
High-redshift SMBH Timing Problem
Observed SMBH at high-z

- Powered by SMBHs (mass \gtrsim a few $\times 10^9 M_\odot$). (Willott et al 2003; Wu et al 2015)

- Number density $\sim 1 \text{Gpc}^{-3}$.
Timing Crisis and DCBH scenario

[Diagram showing the growth of black hole masses over time.]
LW Flux dissociates $H_2 \rightarrow$ DCBH

\[T_{\text{vir}} \approx 10^4 \text{ K} \]

Supermassive Seed

Strong LW Flux

H$_2$ + Metal Cooling

Star Formation

figure credit: Smith et al. 2017
DCBH scenario vs Star accretion scenario

figure credit: Natarajan et al. 2007
The problem with DCBH

Cosmological simulations \rightarrow much fewer candidates than expected

(Habouzit et al. 2016, Agarwal et al. 2018)
High-redshift SMBH Environment Problem
Expected High-z SMBH Environment

Cosmological simulations \Rightarrow high-z SMBH forms in dense regions extending to ~ 10 physical Mpc \textit{(Overzier et al. 2009; Muldrew et al. 2015)}
Observed High-z SMBH Environment

No obvious overdensity around high-z QSOs within \sim a few physical Mpc around.

Primordial Black Holes (PBH) as a Solution
PBH models

High-z SMBHs are primordial ($\sim O(1)$ primordial metric fluctuations)?

- No timing problem.
- May or may not have environment problem (model-dependent).
- Most of the models produces too many small PBHs (ruled out by microlensing, wide binaries, CMB μ distortion etc.).
A successful example

A two-field inflation model that works. (Nakama et al. 2016)
Modulated Preheating (M. P.) as a Solution
Idea

Much larger (but still $\ll 1$) primordial fluctuations on scales $\lesssim 0.1 h^{-1} \text{Mpc}$

Key point: make this happen only in very rare regions.
Inflaton ⇒ Standard Model Particles?
Reheating: Inflaton \Rightarrow SM Particles
Inflaton $^\text{decay} \rightarrow$ SM Particles?

Reheating $= \text{perturbative decay}?$

Nothing wrong but too slow:

$$T_r \sim 10^9 \text{GeV}$$
Better scenarios: reheating begins with non-perturbative decay - preheating

\[\text{Inflaton } \phi \overset{\text{para. reson.}}{\rightarrow} \text{some field } \chi \overset{\text{decay}}{\rightarrow} \text{SM partialces} \]

The first step (\(\phi \overset{\text{para. reson.}}{\rightarrow} \chi\)): preheating
High school math

constant frequency

\[\ddot{\chi} + \omega^2 \chi = 0. \]

if \(\omega^2 > 0 \) (\(\omega \) is real): \(\chi \) oscillates;
if \(\omega^2 < 0 \) (\(\omega \) is imaginary): \(\chi \) exponentially grows;
Parametric resonance

time-dependent frequency:

\[\ddot{\chi} + \omega^2(t)\chi = 0. \]

if \(\omega(t) \) quickly varies, \(|\dot{\omega}| \gtrsim \omega^2 > 0 \) can also make \(\chi \) exponentially grow.
Example of Parametric Resonance: Swing
A toy model

\[V(\phi, \chi) = \frac{\lambda}{4} \phi^4 + \frac{g^2}{2} \phi^2 \chi^2. \]

(\phi: \text{inflaton})
Chaotic dynamics

\[V(\phi, \chi) = \frac{\lambda}{4} \phi^4 + \frac{g^2}{2} \phi^2 \chi^2. \]
Typical settings

Hubble horizon size ~ 1 cm (comoving)
Conjecture

causality \Rightarrow uncorrelated on scales \gg cm?
Modulated preheating - basic idea

inflation prepares long wavelength χ fluctuations \Rightarrow modulates preheating
The discovery of modulated preheating

- Propose the chicken and duck idea, wrong numeric result (Suyama and Yokoyama 2007)
- Tried again, wrong numeric result (Chambers and Rajantie 2008)
- New algorithm with 5 orders magnitude improvement of numeric accuracy, correct result (Bond, Frolov, Huang, Kofman, 2009)
The BFHK result
Explaining the CMB cold spot
Use modulated preheating to enhance fluctuations on \(\sim 0.1 \text{Mpc} \) scales.
Use modulated preheating to enhance fluctuations on $\sim 0.1\text{Mpc}$ scales

\[\frac{\zeta_L}{\chi} \frac{d}{dL} \]

\[e^{-\lambda W} \chi_L / \chi_{\text{arm}} \]

$\alpha = 0.05$
$W = 0.5$
$\lambda = 0$

$L = 100h^{-1}\text{Mpc}$
$L = 10h^{-1}\text{Mpc}$
$L = 1h^{-1}\text{Mpc}$
$L = 0.1h^{-1}\text{Mpc}$
Generating more $\gtrsim 10^8 M_\odot$ haloes

![Graph showing the distribution of halo masses](image-url)
Summary: modulated preheating as a solution

Pros.

regions v.s. regions (= standard)

▶ Much more halo pairs for DCBH formation.
▶ No overdense environment on \gtrsim Mpc scales

Cons.

Need $\sim 1/60$ fine-tuning (increase χ mass when $aH \gtrsim 10h\text{Mpc}^{-1}$ during inflation)
Standard Model, M.P. or PBH?

<table>
<thead>
<tr>
<th>redshift</th>
<th>Standard</th>
<th>M. P.</th>
<th>PBH</th>
</tr>
</thead>
<tbody>
<tr>
<td>$z \gtrsim 25$</td>
<td>nothing</td>
<td>nothing</td>
<td>acretion</td>
</tr>
<tr>
<td>$15 \lesssim z \lesssim 25$</td>
<td>nothing</td>
<td>$\gtrsim 10^5 M_\odot$ seeds; merger & acretion</td>
<td>acretion</td>
</tr>
<tr>
<td>$6 \lesssim z \lesssim 15$</td>
<td>$\gtrsim 10^5 M_\odot$ seeds; merger & acretion</td>
<td>$\gtrsim 10^6 M_\odot$ seeds; merger & acretion</td>
<td>acretion</td>
</tr>
<tr>
<td>philosophy</td>
<td>靠山吃山</td>
<td>早起的鸟儿有虫吃</td>
<td>存在即合理</td>
</tr>
</tbody>
</table>
Conclusions

- High-z SMBHs seem not fit well into cosmology: timing problem and environment problem.
- PBH (very nontrivial inflation potential) and M.P. (asymmetric preheating potential + $\sim 1/60$ tuning on modulator mass) can both resolve high-z SMBH problems.
- Direct collapse and merger of $\gtrsim 10^5$ BH seeds at very high redshift (detectable GW signals?).